Mechanisms governing the accumulation of estrogen receptor alpha in MCF-7 breast cancer cells treated with hydroxytamoxifen and related antiestrogens

摘要:

This study aimed at a better understanding of estrogen receptor α (ER) up regulation induced by partial estrogen antagonists. Effect of treatment with hydroxytamoxifen (OH-Tam) on ER level in MCF-7 cells was investigated by an approach combining ER measurement (enzyme immunoassay) and morphological demonstration (immunofluorescence). Furthermore, the influence of drug exposure on the rates of ER synthesis and degradation was assessed by determining [ 35 S]methionine incorporated into the receptor in different experimental conditions (measurement of synthesis or pulse-chase experiments). ER up regulation was already induced by a 1-h pulse treatment with OH-Tam, thus a continuous exposure was not required. This process appeared reversible (i.e. ER accumulation due to OH-Tam rapidly vanished upon subsequent exposure to 17β-estradiol (E 2) or the pure antiestrogen RU 58668). While OH-Tam did not affect the rate of [ 35 S]methionine incorporation into ER, it clearly caused an impairment of ER degradation (pulse-chase experiments) indicating that up regulation results from a stabilization of the receptor associated with the maintenance of its synthesis. Various tamoxifen derivatives, as well as a few related partial antiestrogens, were compared on the basis of binding ability and propensity to induce ER up regulation. A close relationship was found between both properties. Structure-activity analysis revealed that the capacity of these compounds to induce ER up regulation is associated with characteristics of their aminoalkyle side-chain, similar to those required for antiestrogenicity.

展开

DOI:

10.1016/j.jsbmb.2003.09.011

被引量:

120

年份:

2003

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用