Logarithmic Scaling in the Stationary-Nonstationary Chaos Transition(Condensed Matter and Statistical Physics)

阅读量:

30

作者:

A TakumaA Yoji

展开

摘要:

Statistical features of the transition process from stationary to nonstationary chaos are studied using modified Bernoulli maps. The stationary-nonstationary chaos transition process can be generated by varying the value of the parameter that controls the intensity of the intermittency. The measure-theoretical structures of the chaos transition process are significantly different from the time-independent case, and new statistical phenomena appear, even when the value of the system parameter is changed continuously in time. The temporal behavior of the transition process is generally separated into three characteristic phases. The first phase appears in the initial stage of the transition, and the third one in the last stage, where the transition is almost finished, but the most interesting phase is the second one, which continues for long period. The entire transition process is analyzed using the renewal function, which describes the temporal behavior of the mean accumulated number of intermittent jumps. The logarithmic scaling relation appearing in the second phase is studied in detail with finite-range statistics. Finally, the statistical laws of the stationary-nonstationary chaos transition are discussed from the viewpoint of the modeling of seismological phenomena, and it is shown that seismological data are accounted for quite well by a metaphor model in terms of the stationary-nonstationary chaos transition.

展开

被引量:

2

年份:

2003

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

引用走势

2006
被引量:1

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用