Poly(N-vinylpyrrolidone)-block-poly(D,L-lactide) as a new polymeric solubilizer for hydrophobic anticancer drugs: in vitro and in vivo evaluation.

来自 万方

阅读量:

94

作者:

DL GarrecS GoriL LuoD LessardDC SmithMA YessineM RangerJC Leroux

展开

摘要:

The majority of novel anticancer drugs developed to date are intended for parenteral administration. Paradoxically, most of these drugs are water-insoluble, delaying their clinical development. A common approach to confering water solubility to drugs is to use amphiphilic, solubilizing agents, such as polyethoxylated castor oil (e.g., Cremophor EL, CrmEL). However, these vehicles are themselves associated with a number of pharmacokinetic and pharmaceutical concerns. The present work is aimed at evaluating a novel polymeric solubilizer for anticancer drugs, i.e., poly( N-vinylpyrrolidone)-block-poly( d,l-lactide) (PVP-b-PDLLA). This copolymer self-assembles in water to yield polymeric micelles (PM) that efficiently solubilize anticancer drugs, such as paclitaxel (PTX), docetaxel (DCTX), teniposide (TEN) and etoposide (ETO). A PM-PTX formulation was evaluated, both, in vitro on three different cancer cell lines and in vivo for its safety, pharmacokinetics, biodistribution and antitumor activity. In vitro, cytotoxicity studies revealed that the drug-loaded PM formulation was equipotent to the commercial PTX formulation (Taxol). In the absence of drug, PVP-b-PDLLA with 37% DLLA content was less cytotoxic than CrmEL. In vivo, acute toxicity was assessed in mice after a single injection of escalating dose levels of formulated PTX. PM-PTX was well tolerated and the maximum tolerated dose (MTD) was not reached even at 100 mg/kg, whereas the MTD of Taxol was established at 20 mg/kg. At 60 mg/kg, PM-PTX demonstrated greater in vivo antitumor activity than Taxol injected at its MTD. Finally, it was shown in mice and rabbits that the areas under the plasma concentration–time curves were inversely related to PM drug loading.

展开

DOI:

10.1016/j.jconrel.2004.06.018

被引量:

503

年份:

2004

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

引用走势

2010
被引量:61

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用