Overexpression of Catalytic Subunit p110α of Phosphatidylinositol 3-Kinase Increases Glucose Transport Activity with Translocation of Glucose Transporters in 3T3-L1 Adipocytes

阅读量:

50

摘要:

To elucidate the mechanisms of phosphatidylinositol (PI) 3-kinase involvement in insulin-stimulated glucose transport activity, the epitope-tagged p110alpha subunit of PI 3-kinase was overexpressed in 3T3-L1 adipocytes using an adenovirus-mediated gene transduction system. Overexpression of p110alpha was confirmed by immunoblot using anti-tagged epitope antibody. p110alpha overexpression induced a 2.5-fold increase in PI 3-kinase activity associated with its regulatory subunits in the basal state, an increase exceeding that of the maximally insulin-stimulated control cells, while PI 3-kinase activity associated with phosphotyrosyl protein was only modestly elevated. Overexpression of p110alpha induced an approximately 14-fold increase in the basal glucose transport rate, which was also greater than that observed in the stimulated control. No apparent difference was observed in the cellular expression level of either GLUT1 or GLUT4 proteins between control and p110alpha-overexpressing 3T3-L1 adipocytes. Subcellular fractionation revealed translocation of glucose transporters from intracellular to plasma membranes in basal p110alpha-overexpressing cells. The translocation of GLUT4 protein to the plasma membrane was further confirmed using a membrane sheet assay. These findings indicate that an increment in PI 3-kinase activity induced by overexpression of p110alpha of PI 3-kinase stimulates glucose transport activity with translocation of glucose transporters, i.e., mimics the effect of insulin.

展开

DOI:

10.1074/jbc.271.29.16987

被引量:

926

年份:

1996

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用