Loss of Raltegravir Susceptibility by Human Immunodeficiency Virus Type 1 Is Conferred via Multiple Nonoverlapping Genetic Pathways

阅读量:

37

摘要:

The human immunodeficiency virus type 1 (HIV-1) integrase mutations N155H and Q148R(H)(K) that reduce susceptibility to the integrase inhibitor raltegravir have been identified in patients failing treatment regimens containing raltegravir. Whether these resistance mutations occur individually or in combination within a single virus genome has not been defined, nor do we fully understand the impact of these primary mutations and other secondary mutations on raltegravir susceptibility and viral replication capacity. To address these important questions, we investigated the raltegravir susceptibility and replication capacity of viruses containing mutations at positions 155 and 148 separately or in combination with secondary mutations selected in subjects failing treatment regimens containing raltegravir. Clonal analysis demonstrated that N155H and Q148R(H)(K) occur independently, not in combination. Viruses containing a Q148R(H)(K) mutation generally displayed larger reductions in raltegravir susceptibility than viruses with an N155H mutation. Analysis of site-directed mutants indicated that E92Q in combination with N155H resulted in a higher level of resistance to raltegravir than N155H alone. Viruses containing a Q148R(H) mutation together with a G140S mutation were more resistant to raltegravir than viruses containing a Q148R(H) mutation alone; however, viruses containing G140S and Q148K were more susceptible to raltegravir than viruses containing a Q148K mutation alone. Both N155H and Q148R(H)(K) mutations reduced the replication capacity, while the addition of secondary mutations either improved or reduced the replication capacity depending on the primary mutation. This study demonstrates distinct genetic pathways to resistance in subjects failing raltegravir regimens and defines the effects of primary and secondary resistance mutations on raltegravir susceptibility and replication capacity.

展开

DOI:

10.1128/JVI.01168-09

被引量:

254

年份:

2009

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

来源期刊

引用走势

2011
被引量:50

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用