Option Pricing via Utility Maximization in the presence of Transaction Costs: an Asymptotic Analysis

阅读量:

29

作者:

B Bouchard

展开

摘要:

We consider a multivariate financial market with proportional transaction costs as in Kabanov (1999). We study the problem of contingent claim pricing via utility maximization as in Hodges and Neuberger (1989). Using an exponential utility function, we derive a closed form characterization for the asymptotic price as the risk aversion tends to infinity. We prove that it is reduced to the super-replication cost if the initial endowment is only invested in the non-risky asset, as it was conjectured in Barles and Soner (1996). We do not make use of the dual formulation for the super-replication price obtained in Kabanov (1999).

展开

被引量:

9

年份:

2000

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

来源期刊

Economics Papers from University Paris Dauphine
2000

引用走势

2001
被引量:4

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用