Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): attenuation of surface activity by humic and fulvic acids.

来自 NCBI

阅读量:

310

作者:

Pignatello, JJS KwonLu, YF

展开

摘要:

Black carbon (BC) plays a potentially important role in the availability of pollutants in soils and sediments. Recent evidence points to the possible attenuation of the high surface activity of raw BC by natural substances. We studied the effects of soil humic (HA) and fulvic (FA) acids on the surface properties and affinity for organic compounds of synthesized wood charcoal. Char powder suspended in a solution of HA or FA was loaded with organic matter via adsorption, evaporation of the water, or coflocculation with Al3+. These treatments were chosen to simulate initial and more advanced stages of environmental exposure. Coevaporation dramatically reduced the N2 Brunauer-Emmett-Teller total surface area of the char, but only moderately the CO2 cumulative surface area up to 1.4 nm. Organic compound adsorption was suppressed in proportion to molecular size, benzene < naphthalene < phenanthrene and 1,2,4-trichlorobenzene < phenanthrene, for humics in the adsorbed and coflocculated states, respectively. Humic substances also increased the linearity of the isotherms. The model we propose assumes that humic substances are restricted to the external surface where they act as pore blocking agents or competitive adsorbates, depending on the temperature and adsorbate size. Nitrogen is blocked from the internal pore space due to stiffness at 77 K of humic strands extending into pore throats, giving an artificially low surface area. Together with previous results, this finding indicates that N2 may not detect BC microporosity in geosorbents. At higher temperatures (CO2, 273 K; organics, 293 K), humic strands are more flexible, allowing access to interior pores. The counterintuitive molecular size dependence of adsorption suppression by humics is due to a molecular sieving effect in pores in which the adsorption space available to the organic compound is more and more restricted to external sites.

展开

DOI:

10.1021/es061307m

被引量:

745

年份:

2006

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

引用走势

2014
被引量:93

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用