Dopamine transporter occupancies in the human brain induced by therapeutic doses of oral methylphenidate.

阅读量:

88

摘要:

OBJECTIVE: The therapeutic effects of methylphenidate in the treatment of attention deficit disorder have been attributed to its ability to increase the synaptic concentration of dopamine by blocking the dopamine transporters. However, the levels of dopamine transporter blockade achieved by therapeutic doses of methylphenidate are not known. This study measured, for the first time, dopamine transporter occupancy by orally administered methylphenidate in the human brain and its rate of uptake in the brain. METHOD: Positron emission tomography (PET) and [11C]cocaine were used to estimate dopamine transporter occupancies after different doses of oral methylphenidate in seven normal subjects (mean age=24 years, SD=7). In addition, the pharmacokinetics of oral methylphenidate were measured in the baboon brain through use of PET and [11C]methylphenidate administered through an orogastric tube. RESULTS: At 120 minutes after administration, oral methylphenidate produced a dose-dependent blockade of dopamine transporter; means=12% (SD= 4%) for 5 mg, 40% (SD=12%) for 10 mg, 54% (SD=5%) for 20 mg, 72% (SD=3%) for 40 mg, and 74% (SD=2%) for 60 mg. The estimated dose of oral methylphenidate required to block 50% of the dopamine transporter corresponded to 0.25 mg/kg. Oral methylphenidate did not reach peak concentration in brain until 60 minutes after its administration. CONCLUSIONS: Oral methylphenidate is very effective in blocking dopamine transporters, and at the weight-adjusted doses used therapeutically (0.3 to 0.6 mg/kg), it is likely to occupy more than 50% of the dopamine transporters. The time to reach peak brain uptake for oral methylphenidate in brain corresponds well with the reported time course to reach peak behavioral effects.

展开

DOI:

10.1176/ajp.155.10.1325

被引量:

1930

年份:

1998

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用