Failure of intertrochanteric nailing due to distal nail jamming

来自 EBSCO

阅读量:

51

作者:

P ManiscalcoF RiveraJ D'AscolaEOD Vecchio

展开

摘要:

Nail impingement against the anterior femoral cortex during nail insertion, or anterior cortex penetration, has been described in the literature as a worrying complication. We describe a previously unreported surgical failure due to a compromised dynamic distal locking caused by distal jamming of the nail. An 80-year-old male suffered a closed right intertrochanteric femoral fracture. Due to the presence of a long medial fragment, a 240mm long titanium trochanteric nail was chosen to stabilize the fracture. Dynamic distal locking was performed by placing the distal screw at the inferior rim of the elliptical locking hole to allow compression of the fracture site during weight-bearing. Six-month X-ray follow-up revealed a broken nail and nonunion of the fracture due to failed dynamization of the distal locking screw. The nail was removed and replaced by a total arthroplasty. Due to the femoral anterior bow of the shaft, anterior cortical impingement of the distal tip of a nail may result in the failure of the nail to slide within the diaphyseal canal when using a medium-length nail preventing compression of the fracture. Dynamic distal locking can be ineffective if the ability of the distal nail to slide within the diaphyseal canal is hindered. This type of scenario can represent an opportunity for anterior nail impingement. Distal jamming of the nail can thus compromise dynamic compression at the fracture site during loading, thus inducing nonunion of the fracture, and leading to breakage of the osteosynthesis device. For these reasons, caution is recommended when using medium-length trochanteric nails for unstable trochanteric fractures.

展开

DOI:

10.1007/s10195-012-0183-1

被引量:

16

年份:

2013

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用