Release of Benzimidazole and Benzylidene Camphor from Topical Sunscreen Formulations

阅读量:

22

摘要:

Absorption of two ultraviolet (UV) filters was evaluated through a lipophilic synthetic membrane (Folioxane) and excised hairless rat skin using a flow-through diffusion cell. Folioxane membrane is an artificial skin used in the treatment of third-degree burns. Diffusion tests were performed with aqueous solutions and galenic formulations (one water-in-oil [W/O] emulsion and two oily gels). Analyses were achieved with high-performance liquid chromatography (HPLC) with UV detection at 295 nm. Diffusion kinetics of 17 beta estradiol, a reference compound, through rat skin, human skin, and Folioxane membrane were performed to validate the in vitro model. Phenylbenzimidazole and methylbenzylidene camphor in aqueous solutions were diffused at a regular rate through the Folioxane film. The release of phenylbenzimidazole was very slow, whereas the release of benzylidene camphor was more pronounced: a decrease of the quantity was observed in the donor compartment (30% at 6 hr and 93% after 72 hr). A significant flow of benzylidene camphor was also measured through excised skin of rat in the first 3 hr. The skin absorption was 38% over 72 hr. The W/O emulsion had low penetration of UV filter: 20% of the initial amount for Folioxane membrane and 0.4% for rat skin. In contrast, the penetration of two oily gels was identical: 28% on Folioxane membrane and 0.6% on rat skin. This study demonstrates the transcutaneous diffusion of two important classes of sunscreens through a lipophilic Folioxane membrane and through excised hairless rat skin. From the results, Folioxane membrane appears to be an alternative model for studying diffusion of topical molecules and as a tool for guiding formulation choices.

展开

DOI:

10.1081/DDC-100102299

被引量:

27

年份:

1999

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

引用走势

2014
被引量:5

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用