Robustness portraits of diverse biological networks conserved despite order-of-magnitude parameter uncertainty

阅读量:

21

作者:

AR SoltisJJ Saucerman

展开

摘要:

MOTIVATION: Biological networks are robust to a wide variety of internal and external perturbations, yet fragile or sensitive to a small minority of perturbations. Due to this rare sensitivity of networks to certain perturbations, it is unclear how precisely biochemical parameters must be experimentally measured in order to accurately predict network function. RESULTS: Here, we examined a model of cardiac β-adrenergic signaling and found that its robustness portrait, a global measure of steady-state network function, was well conserved even when all parameters were rounded to their nearest 1-2 orders of magnitude. In contrast, β-adrenergic network kinetics were more sensitive to parameter precision. This analysis was then extended to 10 additional networks, including Escherichia coli chemotaxis, stem cell differentiation and cytokine signaling, of which nine exhibited conserved robustness portraits despite the order-of-magnitude approximation of their biochemical parameters. Thus, both fragile and robust aspects of diverse biological networks are largely shaped by network topology and can be predicted despite order-of-magnitude uncertainty in biochemical parameters. These findings suggest an iterative strategy where order-of-magnitude models are used to prioritize experiments toward the fragile network elements that require precise measurements, efficiently driving model revision. CONTACT: jsaucerman@virginia.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

展开

DOI:

10.1016/j.bpj.2010.12.1118

被引量:

13

年份:

2011

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

来源期刊

引用走势

2014
被引量:7

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用