Numerical path integral techniques for long time dynamics of quantum dissipative systems
摘要:
Recent progress in numerical methods for evaluating the real‐time path integral in dissipative harmonic environments is reviewed. Quasi‐adiabatic propagators constructed numerically allow convergence of the path integral with large time increments. Integration of the harmonic bath leads to path integral expressions that incorporate the exact dynamics of the quantum particle along the adiabatic path, with an influence functional that describes nonadiabatic corrections. The resulting quasi‐adiabatic propagator path integral is evaluated by efficient system‐specific quadratures in most regimes of parameter space, although some cases are handled by grid Monte Carlo sampling. Exploiting the finite span of nonlocal influence functional interactions characteristic of broad condensed phase spectra leads to an iterative scheme for calculating the path integral over arbitrary time lengths. No uncontrolled approximations are introduced, and the resulting methodology converges to the exact quantum result with modest amounts of computational power. Applications to tunneling dynamics in the condensed phase are described.
展开
关键词:
Condensation dynamics Non adiabatic reactions Spectral properties Thermodynamic properties Tunneling
DOI:
10.1063/1.531046
被引量:
年份:
1995
通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!