Selective insulin resistance in the polycystic ovary syndrome.
摘要:
Polycystic ovary syndrome (PCOS) is characterized by hyperandrogenemia that is amplified by insulin in the presence of resistance to insulin's action to stimulate glucose uptake in muscle and fat. To explore the mechanisms for this paradox, we examined the metabolic and mitogenic actions of insulin and insulin-like growth factor I (IGF-I) in cultured skin fibroblasts from PCOS (n = 16) and control (n = 11) women. There were no significant decreases in the number or affinity of insulin- or IGF-I-binding sites in PCOS compared to control fibroblasts. Basal rates were similar, but there were significant decreases in insulin-stimulated (control, 51.8 +/- 7.0; PCOS, 29.5 +/- 2.9 nmol/10(6) cells x 2 h at 1,000,000 pmol/L; P < 0.005) and IGF-I-stimulated (control, 48.9 +/- 6.7; PCOS, 33.0 +/- 3.2 PCOS nmol/10(6) cells x 2 h at 100,000 pmol/L IGF-I; P < 0.05) glucose incorporation into glycogen in PCOS fibroblasts, a metabolic action of insulin. Stimulation of thymidine incorporation, a mitogenic action of insulin, was similar in PCOS and control fibroblasts in response to both insulin and IGF-I. There were also no significant differences in insulin- or IGF-I-stimulated insulin receptor substrate-1-associated phosphatidylinositol-3-kinase activity in PCOS compared to control fibroblast cells. We conclude that 1) there is a selective defect in insulin action in PCOS fibroblasts that affects metabolic, but not mitogenic, signaling pathways; 2) there is a similar defect in IGF-I action, suggesting that insulin and IGF-I stimulate glycogen synthesis by the same postreceptor pathways; and 3) insulin receptor substrate-1-associated phosphatidylinositol 3-kinase activation by insulin and IGF-I is similar to the control value, suggesting that the metabolic signaling defect is in another pathway or downstream of this signaling step in PCOS fibroblasts.
展开
关键词:
Humans Fibroblasts Cells, Cultured Polycystic Ovary Syndrome Insulin Resistance Glycogen Insulin-Like Growth Factor I Insulin DNA Glucose
DOI:
10.1210/jcem.84.9.6010
被引量:
年份:
1999


























通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
引用走势
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!