Detailed Sorption Isotherms of Polar and Apolar Compounds in a High-Organic Soil
摘要:
Sorption isotherms of 13 apolar liquids and solids and polar solidssix in unprecedented detailare used to evaluate a polymer-based model for natural organic matter. While all isotherms are nonlinear, the "running" Freundlich exponent n varies markedly with concentration. The isotherms show linear-scale inflection consistent with the presence of flexible (deformable) porosity as predicted by the glassy polymer-based Extended Dual-Mode Model (EDMM). The EDMM assumes dissolution and hole-filling domains in the organic solid, with provision for sorbate-caused plasticization of the solid and "melting" of the holes. Features of the EDMM are illustrated for chlorinated benzenes in poly(vinyl chloride). The solutes fall into categories of "hard" (aliphatics and 2,4-dichlorophenol) and "soft" (chlorinated benzenes, 2-chloronitrobenzene) according to their ability to plasticize organic matter. Comparison of domain coefficients at infinite dilution reveals that organic solutes have a modestly greater affinity for holes than dissolution sites (by 0.10.6 log unit), as expected by the polymer model. Sorption of CHCl3 shows time-dependent hysteresis diminished at high concentrations by the plasticizing effect. Sorption of CHCl3 also shows a type of hysteresis for glassy solids known as the "conditioning effect" in which high loading of sorbate increases hole population upon its removal and thus leads to enhanced uptake and nonlinearity when a second sorption is performed. A Polanyi-based, fixed-pore filling model applied to the adsorption component of the isotherms gave widely variant volumetric pore capacity, contrary to its own stipulations, and could not explain the hysteresis.
展开
关键词:
Water Soil Soil Pollutants Organic Chemicals Adsorption Solubility Thermodynamics Models, Chemical
DOI:
10.1021/es001320l
被引量:
年份:
2001
相似文献
参考文献
引证文献
引用走势
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!