Symbolic Compositional Verification by Learning Assumptions

阅读量:

54

作者:

W NamP MadhusudanR Alur

展开

摘要:

Compositional reasoning aims to improve scalability of verification tools by reducing the original verification task into subproblems. The simplification is typically based on assume-guarantee reasoning principles, and requires user guidance to identify appropriate assumptions for components. In this paper, we propose a fully automated approach to compositional reasoning that consists of automated decomposition using a hypergraph partitioning algorithm for balanced clustering of variables, and discovering assumptions using the L * algorithm for active learning of regular languages. We present a symbolic implementation of the learning algorithm, and incorporate it in the model checker NuSmv . In some cases, our experiments demonstrate significant savings in the computational requirements of symbolic model checking.

展开

DOI:

10.1007/s10703-008-0055-8

被引量:

232

年份:

2008

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用