Generalization Bounds for the Area Under the ROC Curve

来自 EBSCO

阅读量:

94

作者:

S AgarwalT GraepelR HerbrichS Har-PeledD RothMI Jordan

展开

摘要:

We study generalization properties of the area under the ROC curve (AUC), a quantity that has been advocated as an evaluation criterion for the bipartite ranking problem. The AUC is a different term than the error rate used for evaluation in classification problems; consequently, existing generalization bounds for the classification error rate cannot be used to draw conclusions about the AUC. In this paper, we define the expected accuracy of a ranking function (analogous to the expected error rate of a classification function), and derive distribution-free probabilistic bounds on the deviation of the empirical AUC of a ranking function (observed on a finite data sequence) from its expected accuracy. We derive both a large deviation bound, which serves to bound the expected accuracy of a ranking function in terms of its empirical AUC on a test sequence, and a uniform convergence bound, which serves to bound the expected accuracy of a learned ranking function in terms of its empirical AUC on a training sequence. Our uniform convergence bound is expressed in terms of a new set of combinatorial parameters that we term the bipartite rank-shatter coefficients; these play the same role in our result as do the standard VC-dimension related shatter coefficients (also known as the growth function) in uniform convergence results for the classification error rate. A comparison of our result with a recent uniform convergence result derived by Freund et al. (2003) for a quantity closely related to the AUC shows that the bound provided by our result can be considerably tighter.

展开

DOI:

10.1007/s10883-005-4175-9

被引量:

387

年份:

2005

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用