Syntheses and electronic structures of one-electron-oxidized group 10 metal(II)-(disalicylidene)diamine complexes (metal = Ni, Pd, Pt)
摘要:
The geometric and electronic structures of a series of one-electron oxidized group 10 metal salens (Ni, Pd, Pt) have been investigated in solution and in the solid state. Ni (1) and Pd (2) complexes of the tetradentate salen ligand N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediamine (H(2)Salcn) have been examined along with the Pt (3) complex of the salen ligand N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-ethylenediamine (H(2)Salen). All three oxidized compounds exist as ligand radical species in solution and in the solid state. The solid state structures of [1](+) and [3](+) exhibit a symmetric coordination sphere contraction relative to the neutral forms. By contrast, the coordination sphere of the Pd derivative [2](+) exhibits a pronounced asymmetry in the solid state. In solution, the oxidized derivatives display intense low-energy NIR transitions consistent with their classification as ligand radical compounds. Interestingly, the degree of communication between the phenolate moieties depends strongly on the central metal ion, within the Ni, Pd, and Pt series. Electrochemical measurements and UV-vis-NIR spectroscopy, in conjunction with density functional theory calculations provide insights into the degree of delocalization of the one-electron hole in these systems. The Pd complex [2](+) is the least delocalized and is best described as a borderline Class II/III intervalence complex based on the Robin-Day classification system. The Ni [1](+) and Pt [3](+) analogues are Class III (fully delocalized) intervalence compounds. Delocalization is dependent on the electronic coupling between the redox-active phenolate ligands, mediated by overlap between the formally filled metal d(xz) orbital and the appropriate ligand molecular orbital. The degree of coupling increases in the order Pd < Ni < Pt for the one-electron oxidized group 10 metal salens.
展开
关键词:
Free Radicals Organometallic Compounds Ethylenediamines Metals Electrodes Temperature Oxidation-Reduction Molecular Structure Methylene Chloride Nickel
DOI:
10.1021/ic901003q
被引量:
年份:
2009
通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!