Inhibition of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced DNA adduct formation and tumorigenicity in the lung of F344 rats by dietary phenethyl isothiocyanate.

阅读量:

72

作者:

MA MorseCX WangGD StonerS MandalFL Chung

展开

摘要:

F344 rats fed diets containing phenethyl isothiocyanate (PEITC, 3 mumol/g diet), a cruciferous vegetable component, before and during treatment with the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), developed about 50% fewer lung tumors than NNK-treated rats fed control diets. NNK-induced liver and nasal cavity tumors in rats were, however, not affected by this dietary treatment. The effects of PEITC diets on the formation of DNA adducts by NNK were also investigated in these target tissues. DNA methylation and pyridyloxobutylation by NNK were both decreased by 50% in lung of rats fed PEITC diets compared to that of rats fed control diets, but the levels of DNA methylation were not affected in liver and nasal mucosa. These results correlated with those from the carcinogenicity bioassay, suggesting that DNA alkylations could be used as indicators for screening inhibitors of NNK tumorigenesis. A slight increase in the number of tumors of the exocrine pancreas was observed in PEITC-fed rats with or without NNK treatments. However, these incidences were not statistically significant when compared to the control groups. The potential toxicity of PEITC at concentrations ranging from 0.75 mumol to 6 mumol/g diet was evaluated in a 13-week study. The only toxicity caused by this treatment was minimal fatty metamorphosis in the liver. Considering the widespread human exposure to NNK through tobacco use, it is of practical importance to demonstrate inhibition of lung tumors induced by this carcinogen. These results provide a basis for studies designed to discover agents of better efficacy for the prevention of NNK-induced tumorigenesis.

展开

DOI:

10.1016/0304-3835(89)90011-6

被引量:

693

年份:

1989

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用