Mechanisms of Silver Nanoparticle Release, Transformation and Toxicity: A Critical Review of Current Knowledge and Recommendations for Future Studies and Applications
摘要:
Nanosilver, due to its small particle size and enormous specific surface area, facilitates more rapid dissolution of ions than the equivalent bulk material; potentially leading to increased toxicity of nanosilver. This, coupled with their capacity to adsorb biomolecules and interact with biological receptors can mean that nanoparticles can reach sub-cellular locations leading to potentially higher localized concentrations of ions once those particles start to dissolve or degrade in situ. Further complicating the story is the capacity for nanoparticles to generate reactive oxygen species, and to interact with, and potentially disturb the functioning of biomolecules such as proteins, enzymes and DNA. The fact that the nanoparticle size, shape, surface coating and a host of other factors contribute to these interactions, and that the particles themselves are evolving or ageing leads to further complications in terms of elucidating mechanisms of interaction and modes of action for silver nanoparticles, in contrast to dissolved silver species. This review aims to provide a critical assessment of the current understanding of silver nanoparticle toxicity, as well as to provide a set of pointers and guidelines for experimental design of future studies to assess the environmental and biological impacts of silver nanoparticles. In particular; in future we require a detailed description of the nanoparticles; their synthesis route and stabilisation mechanisms; their coating; and evolution and ageing under the exposure conditions of the assay. This would allow for comparison of data from different particles; different environmental or biological systems; and structure-activity or structure-property relationships to emerge as the basis for predictive toxicology. On the basis of currently available data; such comparisons or predictions are difficult; as the characterisation and time-resolved data is not available; and a full understanding of silver nanoparticle dissolution and ageing under different conditions is observed. Clear concerns are emerging regarding the overuse of nanosilver and the potential for bacterial resistance to develop. A significant conclusion includes the need for a risk—benefit analysis for all applications and eventually restrictions of the uses where a clear benefit cannot be demonstrated.
展开
关键词:
Experimental/ adsorption ageing cellular biophysics dissolving DNA enzymes molecular biophysics nanobiotechnology nanoparticles silver toxicology/ specific surface area equivalent bulk material adsorb biomolecules biological receptors reactive oxygen species proteins enzymes DNA surface coating nanoparticle size silver nanoparticle toxicity stabilisation mechanisms biological systems structure-property relationships time-resolved data silver nanoparticle dissolution silver nanoparticle ageing bacterial resistance risk-benefit analysis Ag/ A8783 Nanotechnology applications in biomedicine A6146 Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials A6475 Solubility, segregation, and mixing A6845D Adsorption and desorption kinetics evaporation and condensation A8140G Other heat and thermomechanical treatments A8265M Sorption and accommodation coefficients (surface chemistry) A8715 Molecular biophysics A8725F Physics of subcellular structures/ Ag/el
DOI:
10.3390/ma6062295
被引量:
年份:
2013







































通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
来源期刊
引用走势
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!