Temporary Silicon Tether Strategy for Palladium-Catalyzed C--H Activation Reactions

阅读量:

26

作者:

C Huang

展开

摘要:

A palladium-catalyzed intramolecular ortho C–H arylation of phenols has been developed. This methodology features the employment of a removable silicon tether strategy, allowing both TBDPS and a newly developed Br-TBDPS protecting groups to serve as efficient aryl group donors for arylation of phenols. Along this line, this removable silicon tether strategy was further applied to the intramolecular arylation of bisaryloxysilanes for the preparation of unsymmetrical ortho-biphenols, ortho-binaphthols, and mixed ortho-phenol-naphthols. We have also developed a silanol-directed, palladium-catalyzed C–H alkenylation of phenols. Thus, employment of silanol as a traceless directing group is very convenient as it can easily be installed and removed under mild conditions. This alkenylation method is general, as it tolerates a variety of differently substituted phenols and diverse electron-deficient alkenes. The synthetic usefulness of this novel transformation was demonstrated in the efficient synthesis of benzofuranone derivative. Furthermore, the application of this method to the olefination of estrone showcased the viability of this method for the late-stage modification of bioactive molecules for drug discovery. Mechanistic studies supported an electrophilic pathway for the C–H activation step. We have also shown that silanol can direct palladium-catalyzed C–H oxygenation of phenols en route to catechols. This protocol is highly site selective and general, as it allows for efficient oxygenation of phenols regardless of their electronic properties. Mechanistic studies indicated that this C–H oxygenation reaction undergoes ortho C–H acetoxylation first, the product of which is then converted into the cyclic silyl-protected catechol via a transesterification/cyclization sequence mediated by the in situ generated acetic acid.

展开

DOI:

http://hdl.handle.net/10027/9484

年份:

2012

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用