Operation Everest II: neuromuscular performance under conditions of extreme simulated altitude

阅读量:

56

摘要:

The force output of the ankle dorsiflexors was studied during a 40-day simulated ascent of Mt. Everest in a hypobaric chamber; both electrically activated and maximal voluntary contractions (MVCs) were employed. The purpose of this study was to establish whether, under conditions of progressive chronic hypoxia, there was a decrease in muscle force output and/or increased fatigability. We also attempted to identify the main site of any failure, i.e., central nervous system, neuromuscular junction, or muscle fiber. Muscle twitch torque (Pt), tetanic torque (Po), MVC torque, and evoked muscle compound action potential (M wave) were monitored during 205-s exercise periods in five subjects at three simulated altitudes (760, 335, and 282 Torr). All three types of torque measurement were well preserved at the three altitudes. In some subjects, the responses to stimuli interpolated during repeated MVCs provided evidence of "central" fatigue at altitude. In addition, the rate of fatigue during 20-Hz electrical stimulation was greater (P less than 0.01) at altitude and there was increased fatigability of the twitch (P less than 0.025); however, the M wave amplitude was maintained. We conclude that central motor drive becomes more precarious at altitude and is associated with increased muscle fatigue at low excitation frequencies; the latter is the result, in part, of chronic hypoxia and occurs in the muscle fiber interior because no impairment in neuromuscular transmission could be demonstrated.

展开

DOI:

10.1152/jappl.1990.68.3.1167

被引量:

165

年份:

1990

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用