Functional interaction between the homeotic genes fbp1 and pMADS1 during petunia floral organogenesis.

摘要:

The petunia MADS box floral binding protein (fbp) gene 1 represents a class B homeotic gene determining the identity of second and third floral whorl organs. Suppression of fbp1, which is highly homologous to the Antirrhinum gene globosa and Arabidopsis gene pistillata, results in the conversion of petals to sepals and stamens to carpels. In contrast to fbp1, the petunia homeotic gene pMADS1, encoding a protein homologous to the Antirrhinum protein DEFICIENS, has been shown to be involved in the formation of petals only. We demonstrated that the induction of fbp1 is established independent of pMADS1, whereas at later developmental stages, fbp1 is up-regulated by pMADS1 in petals. On the other hand, the induction and maintenance of pMADS1 expression are not affected by fbp1. To obtain information about the functional interaction between fbp1 and pMADS1, an fbp1 cosuppression mutant with mild phenotypic alterations was crossed with a green petals mutant in which pMADS1 expression was abolished. Progeny plants, heterozygous for the pMADS1 gene, had flowers with a more pronounced reversion from petals into sepals than was observed for the parent fbp1 mutant. The morphology of the third whorl organs was not changed. These observations, together with expression levels of pMADS1 and fbp1 in mutant flowers, provide evidence for functional control of fbp1 by PMADS1 in vivo.

展开

DOI:

10.2307/3870111

被引量:

166

年份:

1995

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

来源期刊

Plant Cell
19950501

引用走势

2010
被引量:18

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用