Time-dependent self-consistent field approximation for intramolecular energy transfer. I. Formulation and application to dissociation of van der Waals molecules

阅读量:

126

作者:

GerberB R.

展开

摘要:

The time‐dependent self‐consistent field method (TDSCF) is formulated and applied to the study of intramolecular dynamics and unimolecular decomposition processes. The method is illustrated by calculations on vibrational predissociation in van der Waals molecules, such as I2(v)Ne→I2(v′)+Ne. The TDSCF has the advantage of achieving formal separability of the modes by associating a time‐dependent Hamiltonian with each mode, while permitting (possibly extensive) energy transfer among the modes via the time‐dependent mean potential which acts on each mode. We present quantal, semiclassical, and classical versions of the method; a proper classical limit of the quantum TDSCF replaces the averages over wave functions by averages over self‐consistently obtained bundles of trajectories. In all three versions, considerable computational economy is retained in comparison with full dynamics calculation. A detailed study is made of those properties which can be correctly obtained in such a time‐dependent mean field theory. Attention is drawn to problems such as the occurrence of spurious states in the asymptotic region, and a simple method for avoiding them is suggested. We find for the I2(v)Ne vibrational predissociation that the TDSCF compares well with corresponding full dynamics calculations for average single mode properties such as dissociation lifetimes and the translational energy release. Moreover, comparison with classical trajectory calculations shows that the TDSCF method reproduces the essential dynamical mechanism of the dissociation (in‐phase impulsive INe collision following several ineffective vibrations). The self‐consistent bundle trajectories and the time‐dependent mean fields are analyzed, and provide insight into the process dynamics. It is concluded that the TDSCF approach in both quantal and quasiclassical versions is a potentially powerful tool in the study of intramolecular energy transfer and unimolecular dissociation.

展开

DOI:

10.1063/1.444225

被引量:

552

年份:

1982

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用