Linkage-specific action of endogenous sialic acid O-acetyltransferase in Chinese hamster ovary cells.

阅读量:

46

作者:

WX ShiR ChammasA Varki

展开

摘要:

9-O-Acetylation of sialic acids shows cell type-specific and developmentally regulated expression in various systems. In a given cell type, O-acetylation can also be specific to a particular type of glycoconjugate. It is assumed that this regulation is achieved by control of expression of specific 9-O-acetyltransferases. However, it has been difficult to test this hypothesis, as these enzymes have so far proven intractable to purification or molecular cloning. During a cloning attempt, we discovered that while polyoma T antigen-positive Chinese hamster ovary cells (CHO-Tag cells) do not normally express cell-surface 9-O-acetylation, they do so when transiently transfected with a cDNA encoding the lactosamine-specific alpha2-6-sialyltransferase (Galbeta1-4GlcNAc:alpha2-6-sialyltransferase (ST6Gal I); formerly ST6N). This phenomenon is reproducible by stable expression of ST6Gal I in parental CHO cells, but not upon transfection of the competing lactosamine-specific alpha2-3-sialyltransferase (Galbeta1-(3)4GlcNAc:alpha2-3-sialyltransferase; (ST6Gal III) formerly ST3N) into either cell type. Further analyses of stably transfected parental CHO-K1 cells indicated that expression of the ST6Gal I gene causes selective 9-O-acetylation of alpha2-6-linked sialic acid residues on N-linked oligosaccharides. In a similar manner, while the alpha2-3-linked sialic acid residue of the endogenous GM3 ganglioside of CHO cells is not O-acetylated, transfection of an alpha2-8-sialyltransferase (GM3:alpha2-8-sialyltransferase (ST8Sia I); formerly GD3 synthase) caused expression of 9-O-acetylation of the alpha2-8-linked sialic acid residues of newly synthesized GD3. These data indicate either that linkage-specific sialic acid O-acetyltransferase(s) are constitutively expressed in CHO cells or that expression of these enzymes is secondarily induced upon expression of certain sialyltransferases. The former explanation is supported by a low level of background 9-O-acetylation found in parental CHO-K1 cells and by the finding that O-acetylation is not induced when the ST6Gal I or ST8Sia I cDNAs are overexpressed in SV40 T antigen-expressing primate (COS) cells. Taken together, these results indicate that expression of sialic acid 9-O-acetylation can be regulated by the action of specific sialyltransferases that alter the predominant linkage of the terminal sialic acids found on specific classes of glycoconjugates.

展开

DOI:

doi:10.1074/jbc.271.25.15130

被引量:

159

年份:

1996

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

来源期刊

引用走势

1998
被引量:18

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用