Spectroscopic Evidence for the Formation of Mixed-Cation Hydroxide Phases upon Metal Sorption on Clays and Aluminum Oxides

来自 Elsevier

阅读量:

34

作者:

AndréM.ScheideggerandGeraldineM.LambleandDonaldL.

展开

摘要:

Retention of heavy metal ions on soil mineral surfaces is an important process for maintaining environmental quality. A thorough understanding of the kinetics and mechanisms of heavy metal sorption on soil mineral surfaces is therefore of fundamental importance. The present study examines the kinetics and mechanisms of Ni(II) sorption onto pyrophyllite, kaolinite, gibbsite, and montmorillonite. Ni sorption reactions were initially fast (15–40% of the initial Ni was removed within the first hour). Thereafter, the rate of sorption decreased significantly. X-ray absorption fine structure (XAFS) spectroscopy was used to determine the local structural environment of Ni(II). Data analysis reveals the presence of polynuclear Ni surface complexes. Ni–Ni bond distances (3.00–3.03 Å) were distinctly shorter than in Ni(OH)2(s) (3.09 Å). We propose that the reduction of the Ni-Ni distances is caused by the formation of mixed Ni/Al hydroxide phases. The XAFS spectra and derived structural parameters are similar to those in takovite (Ni6Al2(OH)16CO3·H2O), thus suggesting the presence of a Ni phase of similar structure. Even though dissolved Al could not be detected in our samples, Al could have been released into solution and incorporated into mixed Ni/Al hydroxide-like phases. The formation of such phases can explain the finding that the dissolution rates (Si-release) are strongly enhanced (relative to the dissolution rates of the clays alone) as long as Ni sorption is pronounced. We suspect that the release of Al into solution is the rate-determining step for the formation of mixed Ni/Al hydroxide-like phases in our study. Our study demonstrates that mixed Ni/Al hydroxide-like compounds can form when Ni is introduced into a suitable environment in which there is a source of hydrolyzed species of Al. One can speculate that the formation of mixed-cation hydroxide compounds also represents a plausible “sorption mode” for other divalent metal ions when silicates or oxides are present. It has been shown that similar mixed-cation hydroxide compounds can be synthesized when Mg(II), Ni(II), Co(II), Zn(II), or Mn(II) is added to suspensions containing Al(III), Fe(III), and Cr(III). Thus, the formation of mixed-cation hydroxide compounds should be considered when conducting metal sorption experiments, modeling metal surface complexation, determining speciation, and assessing the risk of the migration of contaminants in polluted sites.

展开

DOI:

10.1006/jcis.1996.4624

被引量:

360

年份:

1997

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用