of Marine Turtles

阅读量:

41

作者:

LH Herbst

展开

摘要:

Cutaneous fibropapillomatosis in green sea turtles, Chelonia mydas (GTFP), was first reported over 50 years ago. In the last decade, GTFP has emerged as a significant worldwide epizootic with prevalences as high as 92% in some green turtle populations. Lesions similar to GTFP have been observed in other marine turtle species including olive ridleys, Lepidochelys olivacea, flatbacks, Natator depressus, and loggerheads, Caretta caretta, but disease in these species occurs at lower frequencies and is less well documented. The etiology of GTFP is unknown, and a variety of hypotheses concerning the possible etiology and pathogenesis of GTFP have been proposed and are discussed in this paper. Possible etiologies include viruses, metazoan parasites, ultraviolet radiation, and chemical carcinogens. Recent evidence from controlled transmission experiments implicates a filterable infectious agent as the primary etiology of GTFP. A herpesvirus has been identified in some lesions but has not been isolated and cultured; consequently, Koch's postulates have not yet been fulfilled for this agent. The epizootiology and pathogenesis of GTFP are poorly understood. Epizootiologic evidence, while limited to a few field studies, suggests that environmental conditions in certain nearshore marine habitats favor a high prevalence of disease expression. The possibility that immune system modulators play a role in the persistence and severity of this disease is discussed. Detailed investigations of the epizootiology of GTFP must await identification of the etiologic agent and development of specific diagnostic tests. In addition, until immune function tests can be developed and validated for free-ranging turtles, hypotheses about the role of immune system dysfunction in GTFP epizootics cannot be tested.

展开

DOI:

10.1016/0959-8030(94)90037-x

被引量:

339

年份:

1994

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

引用走势

2009
被引量:24

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用