Antisense oligonucleotides against cytochrome P450 2C8 attenuate EDHF-mediated Ca2+ changes and dilation in isolated resistance arteries

来自 NCBI

阅读量:

38

作者:

S BolzB FisslthalerS PieperhoffCD WitI FlemingR BusseU Pohl

展开

摘要:

Using a novel vessel culture technique in combination with antisense oligonucleotide transfection, we tested whether the endothelium-derived hyperpolarizing factor (EDHF) is a cytochrome P450 (CYP)-related compound. Isolated resistance arteries from hamster gracilis muscle (n=19) were perfused and exposed to antisense (As), sense (S), or scrambled (Scr) oligonucleotides against the coding region of CYP2C8/9, an isoform expressed in endothelial cells. Thereafter, NO- and prostaglandin-independent, EDHF-mediated vascular responses associated with hyperpolarization [i.e., decrease in smooth muscle calcium (Fura 2) and vasodilation] were studied after the application of acetylcholine (ACh). These EDHF-mediated responses were markedly attenuated (by 70%) by As- but not by S- or Scr-oligonucleotide treatment. However, the responses to norepinephrine (0.3 micromol/l), the NO donor sodium nitroprusside (1 micromol/l), and the K(Ca) channel activator NS1619 (100 micromol/l) were unaltered. As treatment, which specifically targeted the endothelial layer (as assessed by confocal microscopy), had no inhibitory effect on increases in endothelial calcium to ACh. It is concluded that a CYP2C8/9-related isoform functions as an EDHF synthase in hamster resistance arteries and that a product of this enzyme is an EDHF, or at least an integral part of the signaling cascade leading to EDHF-mediated responses.-Bolz, S.-S., Fisslthaler, B., Pieperhoff, S., de Wit, C., Fleming, I., Busse, R., Pohl, U. Antisense oligonucleotides against cytochrome P450 2C8 attenuate EDHF-mediated Ca(2+) changes and dilation in isolated resistance arteries.

展开

DOI:

10.1002/elan.200390117

被引量:

372

年份:

2000

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用