Metabolic stress and altered glucose transport: activation of AMP-activated protein kinase as a unifying coupling mechanism.

阅读量:

85

摘要:

5'AMP-activated protein kinase (AMPK) can be activated in response to cellular fuel depletion and leads to switching off ATP-consuming pathways and switching on ATP-regenerating pathways in many cell types. We have hypothesized that AMPK is a central mediator of insulin-independent glucose transport, which enables fuel-depleted muscle cells to take up glucose for ATP regeneration under conditions of metabolic stress. To test this hypothesis, rat epitrochlearis muscles were isolated and incubated in vitro under several conditions that evoke metabolic stress accompanied by intracellular fuel depletion. Rates of glucose transport in the isolated muscles were increased by all of these conditions, including contraction (5-fold above basal), hypoxia (8-fold), 2,4-dinotrophenol (11-fold), rotenone (7-fold), and hyperosmolarity (8-fold). All of these stimuli simultaneously increased both alpha1 and alpha2 isoform-specific AMPK activity. There was close correlation between alpha1 (r2 = 0.72) and alpha2 (r2 = 0.67) AMPK activities and the rate of glucose transport, irrespective of the metabolic stress used, all of which compromised muscle fuel status as judged by ATP, phosphocreatine, and glycogen content. 5-Aminoimidazole-4-carboxamide ribonucleoside, a pharmacological AMPK activator that is metabolized to an AMP-mimetic ZMP, also increased both glucose transport and AMPK activity but did not change fuel status. Insulin stimulated glucose transport by 6.5-fold above basal but did not affect AMPK activity. These results suggest that the activation of AMPK may be a common mechanism leading to insulin-independent glucose transport in skeletal muscle under conditions of metabolic stress.

展开

DOI:

10.2337/diabetes.49.4.527

被引量:

1339

年份:

2000

相似文献

参考文献

引证文献

来源期刊

引用走势

2010
被引量:116

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用