Propagation of Wigner functions for the Schrödinger equation with a perturbed periodic potential

来自 Springer

阅读量:

36

作者:

G PeterssonPA Bath

展开

摘要:

Let V Γ be a lattice periodic potential and A and Φ external electromagnetic potentials which vary slowly on the scale set by the lattice spacing. It is shown that the Wigner function of a solution of the Schrödinger equation with Hamiltonian operator \\(H = frac{1}{2}{{( - i{{abla }_{x}} - A(\\varepsilon x))}^{2}} + {{V}_{\\Gamma }}(x) + \\phi (\\varepsilon x)\\) propagates along the flow of the semiclassical model of solid states physics up to an error of order ε . If ε -dependent corrections to the flow are taken into account, the error is improved to order ε 2 . We also discuss the propagation of the Wigner measure. The results are obtained as corollaries of an Egorov type theorem proved in [ PST3 ].

展开

DOI:

10.1007/978-0-8176-8202-6_17

被引量:

31

年份:

2004

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用