C?H and C?C Bond Activation by Bare Transition‐Metal Oxide Cations in the Gas Phase

来自 EBSCO

阅读量:

78

作者:

D SchröderH Schwarz

展开

摘要:

Over the last decade the gas-phase chemistry of bare transition-metal oxide cations MO+ has received considerable attention. This interest is primarily due to the particular role of metal oxides in the oxidation of organic compounds in a variety of chemical and biochemical transformations. At a molecular level the simplest model system for these processes deals with reactions of bare metal-oxide ions in the gas phase. Due to the high oxophilicities of the early transition metals, their monoxide cations MO+ do not mediate O-atom transfer to any organic compounds at all. In contrast, monoxide cations of late transition metal can oxygenate a variety of hydro-carbons, and the most reactive ions, MnO+, FeO+, NiO+, OsO+, and PtO+, even activate methane. Insight into the reaction mechanisms of these oxidation processes can be obtained by analysis of reaction kinetics, isotope effects, product distributions etc., and for the reactions of MO+ with alkanes the initial CH bond activation by MO+ is often rate-determining. Interestingly, the high reactivity of some MO+ ions is not always associated with a decrease in regioselectivity; for example, FeO+ ions induce regiospecific -CH bond activation of dialkylketones in the gas phase. The situation for the epoxidation of olefins in the gas phase turns out to be even more complex than for condensedphase analogues. This is primarily because the metal ion that mediates O-atom transfer to the olefin also catalyzes the isomerization of the epoxides formed, to afford the energetically more stable aldehydes or ketones. Aromatic compounds can also be hydroxylated by MO+ ions, and particularly the oxidation of benzene by bare FeO+ ions in the gas phase reveals striking parallels to the metabolism of arenes. Furthermore, the storing capabilities of ion cyclotron resonance mass spectrometers even permit the design of catalytic processes in which a single metal ion converts more than one substrate molecule into an oxygenated product in a sequence of strictly bimolecular reactions. The most outstanding examples are the Pt+-mediated oxidation of methane by molecular oxygen and the Co+-mediated hydroxylation of benzene by N2O as oxidant. Finally, the key features of the gas-phase reactions are compared with observations in condensed-phase systems in which metal oxides are anticipated as central intermediates. The result of this comparison is promising in the sense that, in general, the understanding of transition-metal-mediated oxidations in the gas phase may lead to a more uniform description of these processes at a molecular level. Ultimately, it is hoped that gas-phase studies will serve as one of the building blocks in

展开

DOI:

10.1002/anie.199519731

被引量:

1520

年份:

1995

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用