Fallibility in estimating direct effects
摘要:
We use causal graphs and a partly hypothetical example from the Physicians' Health Study to explain why a common standard method for quantifying direct effects (i.e. stratifying on the intermediate variable) may be flawed. Estimating direct effects without bias requires that two assumptions hold, namely the absence of unmeasured confounding for (1) exposure and outcome, and (2) the intermediate variable and outcome. Recommendations include collecting and incorporating potential confounders for the causal effect of the mediator on the outcome, as well as the causal effect of the exposure on the outcome, and clearly stating the additional assumption that there is no unmeasured confounding for the causal effect of the mediator on the outcome.
展开
DOI:
10.1093/ije/31.1.163
被引量:
年份:
2002
















































通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!