Mechanism of adenylate cyclase activation by cholera toxin: Inhibition of GTP hydrolysis at the regulatory site

来自 Elsevier

阅读量:

67

作者:

D CasselZ Selinger

展开

摘要:

Treatment of turkey erthrocyte membranes with cholera toxin caused an enhancement of the basal and catecholamine-stimulated adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] activities. Both of these activities required the presence of GTP. The toxin effect on the adenylate cyclase activity coincided with an inhibition of the catecholamine-stimulated guanosinetriphosphatase activity. Inhibition of the guanosinetriphosphatase, as well as enhancement of the adenylate cyclase activity, showed the same dependence on cholera toxin concentrations, and the effect of the toxin on both activities was dependent on the presence of NAD. It is proposed that continuous GTP hydrolysis at the regulatory guanyl nucleotide site is an essential turn-off mechanism, terminating activation of the adenylate cyclase. Cholera toxin inhibits the turn-off guanosinetriphosphatase reaction and thereby causes activation of the adenylate cyclase. According to this mechanism GTP should activate the toxin-treated preparation of adenylate cyclase, as does the hydrolysis-resistant analog guanosine 5′-(β ,γ -imino)triphosphate [Gpp(NH)p]. Indeed, the toxin-treated adenylate cyclase was maximally activated, in the presence of isoproterenol, by either GTP or Gpp(NH)p, while adenylate cyclase not treated with toxin was stimulated by hormone plus GTP to only one-fifth of the activity achieved with hormone plus Gpp(NH)p. Furthermore, the toxin-treated adenylate cyclase activated by isoproterenol plus GTP remained active for an extended period (half-time of 3 min) upon subsequent addition of the β -adrenergic blocker, propranolol. The native enzyme, however, was refractory to propranolol only if activated by Gpp(NH)p but not by GTP.

展开

DOI:

10.1073/pnas.74.8.3307

被引量:

1288

年份:

1977

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

引用走势

2010
被引量:76

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用