CED-1, CED-7, and TTR-52 Regulate Surface Phosphatidylserine Expression on Apoptotic and Phagocytic Cell

来自 Elsevier

阅读量:

33

作者:

JamesMapesYu-ZenChenAnnaKimShoheiMitaniByung-HoKang

展开

摘要:

ummaryBackground Phosphatidylserine (PS) normally confined to the cytoplasmic leaflet of plasma membrane (PM) is externalized to the exoplasmic leaflet (exPS) during apoptosis, where it serves as an "eat-me" signal to phagocytes. In addition, some living cells such as macrophages also express exPS. Results A secreted Annexin V (sAnxV::GFP) PS sensor reveals that exPS appears early on apoptotic cells in C. elegans embryos and decreases in older or unengulfed apoptotic cells. This decrease in exPS expression is blocked by loss of CED-7, an ATP binding cassette (ABC) transporter, or TTR-52, a secreted PS binding protein. Phagocytic cells also express exPS, which is dependent on the activity of CED-7, TTR-52, and TTR-52-interacting phagocyte receptor CED-1. Interestingly, a secreted lactadherin PS sensor (sGFP::LactC1C2) labels apoptotic cells but not phagocytes, prevents sAnxV::GFP from labeling phagocytes, and compromises phagocytosis. Immuno-electron micrographs of embryos expressing sAnxV::GFP or sGFP::LactC1C2 reveal the presence of extracellular PS-containing vesicles between the apoptotic cell and neighboring cells, which are absent or greatly reduced in the ced-7 and ttr-52 mutants, respectively, indicating that CED-7 and TTR-52 promote the generation of extracellular PS vesicles. Loss of the tat-1 gene, which maintains PS asymmetry in the PM, restores phagocyte exPS expression in ced-1, ced-7, and ttr-52 mutants and partially rescues their engulfment defects. Conclusions CED-7 and TTR-52 may promote the efflux of PS from apoptotic cells through the generation of extracellular PS vesicles, which lead to exPS expression on phagocytes via TTR-52 and CED-1 to facilitate cell corpse clearance.

展开

DOI:

10.1016/j.cub.2012.05.052

被引量:

58

年份:

2012

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

来源期刊

引用走势

2016
被引量:16

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用