Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings1

来自 Elsevier

阅读量:

372

作者:

CA LipinskiF LombardoBW DominyPJ Feeney

展开

摘要:

Experimental and computational approaches to estimate solubility and permeability in discovery and development settings are described. In the discovery setting ‘the rule of 5’ predicts that poor absorption or permeation is more likely when there are more than 5 Hbond donors, 10 Hbond acceptors, the molecular weight (MWT) is greater than 500 and the calculated Log P (CLogP) is greater than 5 (or MlogP > 4.15). Computational methodology for the rule-based Moriguchi Log P (MLogP) calculation is described. Turbidimetric solubility measurement is described and applied to known drugs. High throughput screening (HTS) leads tend to have higher MWT and Log P and lower turbidimetric solubility than leads in the pre-HTS era. In the development setting, solubility calculations focus on exact value prediction and are difficult because of polymorphism. Recent work on linear free energy relationships and Log P approaches are critically reviewed. Useful predictions are possible in closely related analog series when coupled with experimental thermodynamic solubility measurements.

展开

DOI:

10.1016/S0169-409X(96)00423-1

年份:

2001

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用