Catalytic Asymmetric Synthesis of anti- 1,2-Diols

来自 ACS

阅读量:

178

作者:

W NotzB List

展开

摘要:

Substituent effects on the mechanism of the Cope rearrangement were studied by computing C-2h (C-s) cuts through the potential energy surface (PES) for the reaction of 1,5-hexadiene and its di-, tri-, and tetracyano derivatives at the (U)B3LYP/6-31G* and (U)BPW91/6-31G* levels. The stabilization of substituted structures along the cuts is discussed in terms of the energies of isodesmic formation from allyl radicals and acetonitrile molecules. Cyano groups at C1, C3, and C5 provide a nearly additive stabilization of each point along the C-s cut even though their influence on the geometry is competitive. Evaluation of the density of effectively unpaired electrons at various geometries indicates that the radical character of a transition state (TS) is not altered by radical stabilizing substituents as such but depends solely on the interallylic bond length. Although the UB3LYP diyl intermediate for the parent compound is plausible when compared to the lowest triplet PES, neither MRPT2 at the UB3LYP geometries nor UDFT with the original Becke exchange (B) predict any intermediates, Similarly, for each of the three substituted compounds, the most believable (U)BPW91 model gives either one TS or one intermediate. Derivative 1,5-hexadienes with cyano groups at C1, C3, C5 or at C1, C3, C4, C6 rearrange by the same mechanism as the parent, i.e., through a mostly aromatic TS. However, 2,5-dicyano-1,5-hexadiene is found to react through an intermediate. It is suggested that B- rather than B3-type functionals should be used for sigmatropic rearrangements to avoid spurious stationary points.

展开

DOI:

10.1021/ja001460v

被引量:

2913

年份:

2000

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

来源期刊

J.am.chem.soc
2000/07/14

引用走势

2007
被引量:379

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用