Ferro- and ferrimagnetic chains of hin-bridged copper(II) and manganese(II) and hnn-bridged manganese(II) complexes (hin = 4,4,5,5-tetramethylimidazolin-1-oxyl; hnn = 4,4,5,5-tetramethylimidazolin-1-oxyl 3-oxide).
摘要:
We have exploited potential utility of 4,4,5,5-tetramethylimidazolin-1-oxyl (hin) and 4,4,5,5-tetramethylimidazolin-1-oxyl 3-oxide (hnn) as mu-1,4 and mu-1,5 bridging ligands, respectively, carrying an unpaired electron in development of metal-radical hybrid magnets. X-ray diffraction measurements of [Cu(hfac)(2)hin] (1), [Mn(hfac)(2)hin] (2), and [Mn(hfac)(2)hnn] (3) revealed one-dimensional metal-radical alternating chain structures, where hfac denotes 1,1,1,5,5,5-hexafluoropentane-2,4-dionate. Magnetic measurements of 1 indicate the presence of intrachain ferromagnetic coupling between copper and radical spins. The magnetic exchange parameter was estimated as 2J/k = 56.8 K based on an S = 1/2 equally spaced ferromagnetic chain model (H = -2J summation operator S(i).S(i+1)). This ferromagnetic interaction can be explained in terms of the axial coordination of the hin nitrogen or oxygen to Cu(II). The chi(m)T value of 2 and 3 increased on cooling, and the magnetic data could be analyzed by Seiden's ferrimagnetic chain model, giving 2J/k = -325 and -740 K, respectively. The antiferromagnetic interaction of 2 and 3 can be attributed to orbital overlap between the manganese and the oxygen or nitrogen magnetic orbitals. The exchange interactions between Cu-hin and Mn-hnn are larger than those of typical Cu- and Mn-nitronyl nitroxide complexes, indicating that the choice of small ligands is a promising strategy to bestow strong exchange interaction. Compound 3 became a ferrimagnet below 4.4 K, owing to ferromagnetic coupling among the ferrimagnetic chains.
展开
关键词:
Long-range ferromagnetism Alternating spin chains Magnetic-properties Antiferromagnetic interactions Molecular magnets Layered compounds Free radicals Imino Nitroxides Nitronyl
DOI:
10.1021/ic034392x
被引量:
年份:
2003
通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!