Comparison of imidazole- and 2-methyl imidazole-containing farnesyl-protein transferase inhibitors: interaction with and metabolism by rat hepatic cytochrome P450s.

来自 Elsevier

阅读量:

42

作者:

CY TangM ChibaJ NishimeJ H HochmanJ H Lin

展开

摘要:

Methylation at the 2-position of the imidazole ring of IBN (I), a 1, 5-substituted imidazole-containing compound, was carried out to minimize its inhibition of rat cytochrome P450 (CYP)3A activity. The resulting analog 2-MIBN (II) exhibited an inhibitory potency 70-fold weaker (K(i) = 25 microM) than that of I (K(i) = 0.3 microM) toward CYP3A, the major rat liver microsomal P450 isoform(s) for the metabolism of I and II by rat liver microsomes in the presence of NADPH. The structural modification did not switch the major metabolic pathways for I and II, but significantly decreased the affinity of II to the metabolizing enzyme(s) as reflected by the difference in their K(i) values for CYP3A. Enzyme kinetic studies also demonstrated that I had a lower apparent K(m) (0.3 microM) than than II (18 microM), but an apparent V(max) 14 times lower than II. This finding indicates that methylation at the imidazole ring reduced the affinity of the compound to CYP3A, but increased the catalytic capacity, turning I as a substrate of low K(m) value but low capacity into a compound of high K(m) but high capacity for the metabolism. Our results suggest the significance of substrate concentration in comparing the metabolic stability of compounds with different kinetic parameters. Although higher intrinsic clearance is implied for I when the substrate concentration is below or close to its K(m) value, higher metabolic rate was constantly seen with II over micromolar range. The different kinetic parameters of I and II may also explain the observation that no significant difference in pharmacokinetic behavior was seen after an i.v. administration of I and II to the rat.

展开

DOI:

10.1109/ICEPT-HDP.2012.6474739

被引量:

51

年份:

2000

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用